Prediction of Space Charges at SrTiO3 | Mixed Ionic and Electronic Conducting Oxide Heterojunctions from Defect Chemistry (2024)

Prediction of Space Charges at SrTiO3 | Mixed Ionic and Electronic Conducting Oxide Heterojunctions from Defect Chemistry

Claudia Steinbacha, Alexander Schmida, Andreas Nenninga, Florian Fahrnbergera, Herbert Huttera, Markus Kubiceka, Juergen Fleiga

Proceedings of 24th International Conference on Solid State Ionics (SSI24)

Fundamentals: Experiment and simulation

London, United Kingdom, 2024 July 14th - 19th

Organizers: John Kilner and Stephen Skinner

Oral, Claudia Steinbach, presentation 096
Publication date: 10th April 2024

Solid oxide cells are promising devices for decarbonizing the energy economy, as they offer efficient energy storage and generate green alternatives to fossil fuels. In such electrochemical cells, the interfaces between various components are vital for the charge transfer kinetics and therefore for the overall performance of the cell. Although there are well-established models describing interfacial space charge regions for either electronic or ionic species, models describing space charge regions for both ionic and electronic charge carriers are far less developed. The latter type of space charge is, for example, present in high temperature solid oxide solar cells based on the interfaces between SrTiO3 (STO) and other mixed ionic and electronic conductors (MIECs) [1]. Experiments yield photovoltages up to > 1 V, but the interplay of ionic and electronic defects in determining the corresponding space charge potential is not truly understood.

This work focuses on the investigation of space charge regions between highly electronic conducting MIECs and STO. YBa2Cu3O7-δ (YBCO), La0.6Sr0.4FeO3-δ (LSF), La0.6Sr0.4CoO3-δ (LSC), La0.65Sr0.35MnO3-δ (LSM) and La0.9Sr0.1CrO3-δ (LSCr) thin films were grown by pulsed laser deposition on (nominally) undoped STO single crystals. The resulting interfacial space charge zones are investigated by several approaches: First and most prominently, the resistances of space charge regions at the MIEC│MIEC interfaces were determined in a broad range of oxygen partial pressures at 500°C by means of electrochemical impedance spectroscopy. According to these measurements, investigated materials are distinguishable into MIECs leading to very pronounced space charges (LSM, LSCr), MIECs with moderate space charges (LSF, LSC), and oxides that do not lead to any measurable space charge resistance (YBCO). Interestingly, experiments of nanometer thin interlayers of LSM revealed that already a layer thickness of a single unit cell leads to the formation of a space charge with properties very similar to much thicker films. In a second approach, 18O tracer diffusion across the corresponding interfaces revealed information on the depletion of ionic defects (oxygen vacancies). Third, work function measurements by means of X-ray photoelectron spectroscopy were performed for LSCr, LSM and LSF layers on STO, which strongly support the space charge data obtained from impedance measurements. The same is true for the fourth approach, the analysis of space charges by means of photovoltages measured upon UV illumination of these MIEC│STO hetero-interfaces [1]. Finally, a model is developed, which correlates the ionic and electronic driving forces determining the space charge potentials. This model predicts a relation between space charge potentials and reducibilities of the MIECs, i.e. the transition points in Brouwer diagrams. Comparison with literature data on defect energies indeed confirms the predicted trends.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO

nanoGe is a prestigious brand of successful science conferences that are developed along the year in different areas of the world since 2009. Our worldwide conferences cover cutting-edge materials topics like perovskite solar cells, photovoltaics, optoelectronics, solar fuel conversion, surface science, catalysis and two-dimensional materials, among many others.

MATSUS

Previously nanoGe Spring Meeting (NSM) and nanoGe Fall Meeting (NFM), MATSUS is a multiple symposia conference focused on a broad set of topics of advanced materials preparation, their fundamental properties, and their applications, in fields such as renewable energy, photovoltaics, lighting, semiconductor quantum dots, 2-D materials synthesis, charge carriers dynamics, microscopy and spectroscopy semiconductors fundamentals, etc.

International Conference on Hybrid and Organic Photovoltaics

International Conference on Hybrid and Organic Photovoltaics (HOPV) is celebrated yearly in May. The main topics are the development, function and modeling of materials and devices for hybrid and organic solar cells. The field is now dominated by perovskite solar cells but also other hybrid technologies, as organic solar cells, quantum dot solar cells, and dye-sensitized solar cells and their integration into devices for photoelectrochemical solar fuel production.

Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics

The main topics of the Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics (IPEROP) are discussed every year in Asia-Pacific for gathering the recent advances in the fields of material preparation, modeling and fabrication of perovskite and hybrid and organic materials. Photovoltaic devices are analyzed from fundamental physics and materials properties to a broad set of applications. The conference also covers the developments of perovskite optoelectronics, including light-emitting diodes, lasers, optical devices, nanophotonics, nonlinear optical properties, colloidal nanostructures, photophysics and light-matter coupling.

International Conference on Perovskite Thin Film Photovoltaics Perovskite Photonics and Optoelectronics

The International Conference on Perovskite Thin Film Photovoltaics Perovskite Photonics and Optoelectronics (NIPHO) is the best place to hear the latest developments in perovskite solar cells as well as on recent advances in the fields of perovskite light-emitting diodes, lasers, optical devices, nanophotonics, nonlinear optical properties, colloidal nanostructures, photophysics and light-matter coupling.

We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info

Prediction of Space Charges at SrTiO3 | Mixed Ionic and Electronic Conducting Oxide Heterojunctions from Defect Chemistry (2024)

References

Top Articles
Latest Posts
Article information

Author: Jerrold Considine

Last Updated:

Views: 6203

Rating: 4.8 / 5 (78 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Jerrold Considine

Birthday: 1993-11-03

Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

Phone: +5816749283868

Job: Sales Executive

Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.